A General Law of Complete Moment Convergence for Self-Normalized Sums

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Law of Complete Moment Convergence for Self-Normalized Sums

Qing-pei Zang School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China Correspondence should be addressed to Qing-pei Zang, [email protected] Received 9 March 2010; Revised 10 April 2010; Accepted 11 April 2010 Academic Editor: Andrei Volodin Copyright q 2010 Qing-pei Zang. This is an open access article distributed under the Creative Commons Attribution License, whic...

متن کامل

A Limit Theorem for the Moment of Self-Normalized Sums

Qing-pei Zang Department of Mathematics, Huaiyin Teachers College, Huaian 223300, China Correspondence should be addressed to Qing-pei Zang, [email protected] Received 25 December 2008; Revised 30 March 2009; Accepted 18 June 2009 Recommended by Jewgeni Dshalalow Let {X,Xn;n ≥ 1} be a sequence of independent and identically distributed i.i.d. random variables and X is in the domain of attra...

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

On the quadratic moment of self-normalized sums

Let an integer n ≥ 2 and a vector of independent, identically distributed random variables X = (X1, . . . , Xn) be given with P(X = 0) = 0 and define the self-normalized sum Zn = ( Pn i=1 Xi)/( Pn i=1 X 2 i ) . We derive a formula for EZ n which enables us to prove that EZ 2 n ≥ 1 and that EZ n = 1 if and only if the summands are symmetrically distributed. The formula moreover suggests nonparam...

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2010

ISSN: 1029-242X

DOI: 10.1155/2010/760735